CONTRIBUTION TO THE THEORY OF HEAT
EXCHANGE IN A LAYER WITH PERIODIC
CHANGE OF THE DIRECTION OF MOTION OF
THE LIQUID

V. A, Sheiman UDC 536.242

We formulate the problem of heat exchange in a layer of dispersed matter under periodic
variation of the direction of motion of the liquid through the medium, with allowance for the
thermal resistance of the material of the particles in the layer, and under conditions when
the process proceeds without a gradient,

Although heat exchange in a layer of disperse material has been dealt with for several decades, many
problems remain unresolved to this day. The heat exchange in a layer has been considered in greatest
detail in the basic monographs [1-5], and also in [6]. In no known work, however, has the problem of
heat exchange in a layer of disperse material been formulated for periodic variation of the direction of
motion of the liquid through the layer. We consider in this connection a heat-exchange process that follows
the scheme shown in Fig, 1. During the first period of time, 0 =7 = 71y, the motion of the liquid through
the particle layer is in the direction of the solid arrow, and the temperature of the liquid ahead of the
layer is t;. During the next time interval y = v <7 + 74 the liquid flows in the opposite direction, shown
by the dashed arrow, entering the layer at a temperature ty; in the general case t; » ty and 1y # 1,. In the
next time inferval 7y + 1, = 1 < 27y + 1, the liquid again moves in the direction of the solid arrow, the
initial temperature of the liquid is tj, etc. Thus, the initial temperature of the liquid prior to entering
the layer is a periodic function of two values of the coordinate x(x = 0 and x = h), which in turn are functions
of the time 7. Such a variation of the direction of motion of 11qu1ds (gases) with different initial tempera-
tures ty and ty is shown graphically in Fig, 2.

Such a process can occur in regenerative heat exchange [7], in the presence of internal heat sources,
or in coupled heat and mass transfer in drying [8], adsorption [9], diffusion extraction of matter [10], and
other technological processes.
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Fig. 1 Fig. 2
Fig. 1. Theoretical scheme of heat exchange in a layer in the
case of reversal,

Fig. 2. Graphical representation of the variation of the initial
temperature of the liquid under reversal,
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Such a process is usually calculated in the

v U, following manner, In the case of noncoupled transport
U U, the final temperature of the packing or the concen-
e i tration of the material, and in the case of coupled
o2 - ol heat and mass transfer the final temperature of the
t'T"lEj L .l J_ L ___T packing and the final value of the concentration of
Yy a A the material, attained at the end of the first period

e - of the process after a time 1y, are taken to be the
initial distributions of these quantities for the second
period of time 7,. The analysis is confined most
frequently to these periods, since otherwise the
problem becomes so complicated that no means of
solution is known., Such an approach to the calcula-
tion of the temperature of the packing at any instant
of time for arbitrary repeating periods will give results relatively easily only if the liquids move in one
direction, as shown in [11-13].

F:ig. 3. Variation of the initial velocity of the
liquid. a) Start of cycle coincides with the origin;
b) illustrating the determination of the Fourier
series coefficients,

We formulate below the problem for the case of heat exchange in the process described and illustrated
in Figs, 1 and 2. The system of equations for coupled heat and mass transfer is given in most complete
form in [14]. However, since small changes are introduced into the main system of equations in our case,
and the periodic change of direction of the liquid motion is reflected in the boundary conditions, we con-
sider only the simplest case of uncoupled heat and mass transfer in the layer.

Making the usual agsumptions for the process in question and taking into account the thermal resis-
tance of the material of the particles of the layer, the system of heat-exchange equations takes the form

oY (r, x, ) _ “ [azﬁ(r, X, T) . T 09(r, x, 7) } (1)
Jt art 2 or

o At | 0D | O g R 5 ))=0, @)

ox ot cgin |
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or r=R

8, x, =8, XD g, 4)

or r=R

Here I' =2y + 1(y = 1/2 for a sphere, v = 0 for a cylinder, and v =—1/2 for a plate), The system (1)-(4)
should be supplemented by a boundary condition, which can be written for a periodic variation of the
direction of liquid motion (reversal) in the form

t[x (1), T} = tycos é% x () + t,sin %lx(r). {5)

We denote the ratio of the time of passage of the liquid through the layer in one direction (dashed arrow of
Fig. 1) to the time of passage of the liquid in the opposite direction (solid arrow) by y = 713/ry. Then the
periodic function x(r) can be represented as follows:

0, 1, (n +np) <T< 7 [(n+ 1) +npl, N
by 1l 1) + el < T< T (1) (wH DI (
(n=0,1,2,3,...).

x(t) =

It is assumed in (6) that the time intervals during which the liquid moves in a givendirectionareequal. The
function t[x(r), 7] described by relations (5) and (6) is a scalar quantity and consequently establishes only
the temperature of the liquid prior to entering the layer for two values of the coordinate (x = 0 and x = h),
but does not characterize the direction of ligquid motion, Therefore the liquid velocity, which is a vector
quantity reflecting the direction of the liquid motion, should also be a periodic function of the time

+ v, Ty (1 o) << 7 [( 4 1) 4 npl,
(v = | Tl Dl <o (i + 1)
(n=0,1,23 ...

(7)
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Here +v, is the velocity of the liquid in one direction (solid arrow, Fig. 1), —vy, is the liquid velocity in the
opposite direction (dashed arrow, Fig, 1), and in the general case |vy| # [Vpl. Quite frequently, cases
when vyl = |v,| are encountered in applications; we can then write v (7) = vy(7). It is assumed here that
both the velocity of the liquid through the layer and the initial velocities of the liquid are constant quantities,
i,e,, v=const, The function v{r) at a constant value of the velocity on entering the layer is shown in

Fig. 3a. The functions x(7) and P(r1) can be plotted similarly, The function y(7) is also periodic,

(+1, 7 (n +np) <T<T [(2 + 1) + npl,

YO ={_ 1, 5+ 1) +npl <T<T(n+ 1@+ )]
(n=0,1,2,3,...).

(8)

In the case v = const, the system (1)-(5) can be represented in dimensionless form, using the following
notation:

_r. -___0_‘12_. _afF _a . (9)
TR Bl = A ’E-cgvmx’1rl R2T,
¥ (o, &, m) — B, tHE N —19,
@ y o = T ’ =TT,
(0. &) Py ) —Y
We then obtain in place of {1)-(5)
@ &m) _ 68 4 T 3B 5m) (10)
an o P
TED T ED e e, =0, a1
an o0&
Bt | _ iy m—6(,E (12)
9 p=l1
0@t 0)=0, 2EED] _g (13)
dp p=0
. 7 .m
TEM), nl=T, coség—*é(n) + T sm%E(n), (14)
where
a cgm t0,m)—9
b = B0, )= WY
1 R oF o0, ) fo— 9,
- t(g*’ Tl) ——'&0 th__’ﬁl(]
T * 1) = = .
(8% M) o, 0,
Here

B = &l £(0, M) =y,

The functions x(7), v{r), and j(r) can be expanded in a Fourier series. To this end, they should be repre-
sented in the form shown in Fig. 3b, but shifted by 7;/2 relative to the ordinate axis. In such a case they
can be expanded only in even functions, and there will consequently be no discontinuity at + = 0. We expand
the functions x(t) and #(7) in a Fourier series for the dimensionless parameters. The coefficients of the
series are determined as follows:

w2

a—is
N

6

N,/2 /2
E(n)dn= ﬁ— [ S £ (0)dn + g £ (5% dn]
0

n:/2

2 2
=% [E(0) + pE(EY)] = —=—puk*.
Ton [E(0) + KE (EM)] . B3

Since £(0) = 0; (%) =¢*; H =5 +n4 (1, and g, are the dimensionless times corresponding to 74 and T,,
respectively).
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Analogously

Th’,l'? H{'Z
a :i[ j £(0) cos 22" ndn+5 & (&7)os Z2 nd ]
0

H H
Ni/2
2 e wm
am +u
We thus have
N 2 2num (15)
= ——— pEF— — E*sin cos .
E(m) T ng - 3 Tl
Analogously
I—u \ 4 . am 2mm
- ——sin cos 1. (16)
b= Em s 2
me==]
For the velocity of the liquid we have
1 ST 2 .. am 2am
(1) = Vg — 0, - 2—v+v)sm c0s T, (17)
(v) I—HL(O O, :rzm(o h I+p o

m==1

where

Tsum: T, + T,

We note that the temperature and velocity of the liquid prior to entering the layer (t,, th, Voo Vi) i.e.,
at x = 0 and x = h, can also be variable quantities. All the arguments advanced above remain in force, but
to be expandable in a Fourier series the function v(7) must satisfy the Dirichlet conditions. If we neglect
the internal thermal resistance over the volume of the layer particles, then we obtain in the presence of
an internal heat source ¢(x, 1) (e.g., in the case of drying), in place of (1)-(4)

o (1) 0t (x, 7) K ot (x, 1) 4o )= — aF £ (6, ) — B (5, D], (18)
o0x ot Cgim
09 (x, T) aF
= i(x, T) — O (x, (19)
et UL B ]
with initial conditions
8 (x, 0) = 053 £(x, 0) = 0, -+ (fy— By) exp (—- of x) (20)
cgmv

and with boundary condition (5), If jv4i = fvpl, Lee., if v{t) = vy(1), Egs. (18)-(20) can be reduced to the
dimensionless form

(2 anfE’ D D~ — T -0 ) 1)
O 7 —0o), (22)
0z ’

with boundary condition (14), in which 5 should be replaced by z, with

2 = oF T, and R, = _ﬁg’f_
o(l—m) c(1—my)
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NOTATION

thermal diffusivity, m?/h;

bulk specific heat of the liquid (gas) and material of the particles, kcal/m? -deg;
surface area of particles per unit volume of the layer, m?/m3;

height of layer, m;

porosity, m?/m?;

characteristic dimension, m;

running temperature of the liquid, °C;

actual velocity of the liquid through the layer, m/h;

running coordinate, m;

coefficient of heat exchange between the liquid and the particles of the layer, kcal/m? .h .deg;
thermal conductivity coefficient, kcal/m -h .deg;

time, h;

running temperature of the layer particles, °C.
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