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We formulate  the problem of heat exchange in a layer  of dispersed mat te r  under periodic 
variat ion of the direction of motion of the liquid through the medium, with allowance for  the 
thermal  res is tance  of the mater ia l  of the par t ic les  in the layer ,  and under conditions when 
the process  proceeds without a gradient.  

Although heat exchange in a layer  of d isperse  mater ia l  has been dealt with for  severa l  decades,  many 
problems remain  unresolved to this day. The heat exchange in a layer  has been considered in grea tes t  
detail in the basic monographs [1-5], and also in [6]. In no known work, however,  has the problem of 
heat exchange in a layer  of d isperse  mater ia l  been formulated for  periodic variat ion of the direction of 
motion of the liquid through the l a y e r .  We consider  in this connection a heat-exchange process  that follows 
the scheme shown in Fig. 1. During the f i r s t  period of t ime, 0 _< ~ _< ~1, the motion of the liquid through 
the part icle layer  is in the direction of the solid ar row,  and the tempera ture  of the liquid ahead of the 
layer  is t 0. During the next t ime interval ~'1 - T < ~'l + 1"2 the liquid flows in the opposite direction,  shown 
by the dashed ar row,  entering the layer  at a t empera ture  th; in the general  case t o ~ t h and ~i ~ T2. In the 
next t ime interval ~1 + v2 -< ~" < 2~'1 + 1"2 the liquid again moves in the direction of the solid ar row,  the 
initial tempera ture  of the liquid is to, etc. Thus, the initial t empera tu re  of the liquid pr ior  to entering 
the layer  is a periodic function of two values of the coordinate x (x = 0 and x = h), which in turn a re  functions 
of the t ime T. Such a variat ion of the direction of motion of liquids (gases) with different initial t empera -  
tures  t o and t h is shown graphically in Fig.  2. 

Such a process  can occur  in regenerat ive heat exchange [7], in the presence  of internal heat sources ,  
or  in coupled heat and mass  t rans fe r  in drying [8], adsorption [9], diffusion extraction of mat te r  [10], and 
other technological p rocesses .  
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Fig. 1. Theoretical  scheme of heat exchange in a layer  in the 
case of r eversa l .  

Fig. 2. Graphical representation of the variation of the initial 
temperature of the liquid under reversal. 
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Fig .  3. Var i a t ion  of the init ial  ve loc i t y  of the 
l iquid,  a) S ta r t  of cyc l e  co inc ides  with the or ig in ;  
b) i l l u s t r a t ing  the d e t e r m i n a t i o n  of the F o u r i e r  
s e r i e s  coe f f i c i en t s .  

Such a process is usually calculated in the 

following manner. In the case of noncoupled transport 

the final temperature of the packing or the concen- 

tration of the material, and in the case of coupled 
heat and mass transfer the final temperature of the 

packing and the final value of the concentration of 
the material, attained at the end of the first period 
of the process after a time T2, are taken to be the 
initial distributions of these quantities for the second 
period of time I- 2. The analysis is confined most 
frequently to these periods, since otherwise the 
problem becomes so complicated that no means of 
solution is known. Such an approach to the calcula- 
tion of the temperature of the packing at any instant 

of time for arbitrary repeating periods will give results relatively easily only ff the liquids move in one 

direction, as shown in [11-13]. 

We formulate below the problem for the case of heat exchange in the process described and illustrated 
in Figs. I and 2. The system of equations for coupled heat and mass transfer is given in most complete 
form in [14]. However, since small changes are introduced into the main system of equations in our ease, 
and the periodic change of direction of the liquid motion is reflected in the boundary conditions, we con- 
sider only the simplest case of uncoupled heat and mass transfer in the layer. 

Making the usual assumptions for the process in question and taking into account the thermal resis- 
tance of the material of the particles of the layer, the system of heat-exchange equations takes the form 

Oe(r, x, ,r) [O~(r ,x ,  "c) r Ot~(r, x, ~) ] (1) 
Ox L Or2 2 Or J 

0(1) - -  
at (x, +) at (x, x) aF + - -  + it(x, T).-- e(R, x, +)1= O, (2) 

Ox Or Cgm 

- -  ;~ t [ ao (r,orX, T) .] r=R = ~ [o (R, x, ~) - t (x,x)], (3) 

~, (r, x, O)= t~ o, O~ (r,orX, x) r=R = 0. (4) 

H e r e  F = 2v + 1 (v = 1/2 fo r  a s p h e r e ,  v = 0 fo r  a cy l inde r ,  and u = - 1 / 2  fo r  a plate) .  The s y s t e m  (1)-(4) 
should be supp lemented  by a b o u n d a r y  condi t ion,  which  can be wr i t t en  f o r  a pe r iod ic  va r i a t i on  of the 
d i rec t ion  of l iquid mot ion  ( r e v e r s a l )  in the f o r m  

x(x) + thsin~hx('~ ). t ix (~), xl = to cos 2--h- (5) 

We denote the ratio of the time of passage of the liquid through the layer in one direction (dashed arrow of 
Fig. I) to the time of passage of the liquid in the opposite direction (solid arrow) by/~ = ~'2/~'i. Then the 
periodic function x(q-) can be represented as follows: 

0, T~ (n + n~) -< "~ < "q [(n + 1) + n~t], 
x (r) = h, "q [(n + 1) + n~tl ~ z < "q [(n+ 1) (p,+ 1)1 (6) 

(n=0, 1, 2, 3 . . . .  ). 

It is assumed in (6) that the time intervals during which the liquid moves in a qiven direction are equal. The 
function t[x(~-), ~-] described by relations (5) and (6) is a scalar quantity and consequently establishes only 
the temperature of the liquid prior to entering the layer for two values of the coordinate (x = 0 and x = h), 
but does not characterize the direction of liquid motion. Therefore the liquid velocity, which is a vector 
quantity reflecting the direction of the liquid motion, should also be a periodic function of the time 

l +  v o, % (n q- nix) ~ 1 :<  "q [(n -t- I) + n/x], 
(7) 

v (x) = ]__ vh ' ,q [(n + I) +nlx]-~..T<'q [(n+ 1)(/x + 1)] 
[ ( n = 0 ,  1 ,2 ,3  . . . .  ). 
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H e r e  +v 0 is the ve loc i ty  of the liquid in one d i r ec t ion  (solid a r r o w ,  F ig .  1), - v  h is the l iquid ve loc i ty  in the 
opposi te  d i rec t ion  (dashed a r r o w ,  F ig .  1), and in the gene ra l  c a s e  Iv01 # IVhl. Quite f requen t ly ,  c a s e s  
when Iv01 = IVhl a r e  encoun te red  in app l ica t ions ;  we can  then w r i t e  v (r) = V~(T). I t  iS a s s u m e d  h e r e  that  
both the ve loc i ty  of the l iquid th rough  the l a y e r  and the init ial  ve loc i t i es  of the l iquid a r e  cons tan t  quant i t ies ,  
i . e . ,  v = cons t .  The funct ion v(r) at  a cons tan t  value of the ve loc i ty  on en te r ing  the l a y e r  is shown in 
F ig .  3a.  The funct ions  x(r) and ~(r) can be plot ted s i m i l a r l y .  The funct ion ~(r) is a l so  pe r iod ic ,  

(q- I, ~ (n  -t- n~) -<2.. w < ~ [(n -b 1) + hill, (8) 
(~) = / - -  1, % [(n + 1) + nl*l -<2 �9 < ~ [(n + 1)(p + 1)1 

t ( n = O ,  1 ,2 ,3  . . . .  ). 

In the c a s e  v = eons t ,  the s y s t e m  (1)-(5) can be r e p r e s e n t e d  in d imens ion l e s s  f o r m ,  us ing the fol lowing 
nota t ion:  

a 
_ r .  B i =  aN, aF x;  ~ =  w; ( 9 )  

P -  R ' ~, ~ =  CgVm - ~  

o (p, ~, n) = ~(P' ~' ~ ) - -% ; T(~, u)= t(~, n ) - -% 
to - -  % to - -  ~o 

We then obtain in p lace  of (1)-(5) 

oo (p, ~, n) _ a2o (p, ~, n) + r a o  (p, ~, n ) ,  
a~ ap ~ p ap 

k, aT  (~, ~) + ~ (n) aT  (~, ~) + T (~, ~1) - -  0 (1, ~, TI)= O, 
0,1 O~ 

ao(p,ap ~' 0) 0=, = BitT(~, ~l)--O(1,~, 0)1, 

o ( p , ~ , o ) = o ,  ao(p,~,n)ap o=o = ~  

a ~ sin ~.~, ~ T [ ~ 01), ~lI = To cos 2~- 01) + T~. . (n), 

( 1 0 )  

(11) 

(12) 

(13) 

(14) 

w h e r e  

k~ = a . cgm , To(O,~I)= t(O,~l)--t$o 
R 2 aF  to - -  t~o 

T~.(~*, 1]) -- t(~*, ~1) - -#o  _ lh--~o 
to - -  t~o to - -  fro 

- - 1 ,  

H e r e  

~*'= ~l~=h, t(0, 0) = to. 

The funct ions  x(r) ,  v(r) ,  and ~(r) ean be expanded in a F o u r i e r  s e r i e s .  To this  end, they  should be r e p r e -  
sented in t h e ' f o r m  shown in F ig .  3b, but  shif ted by ~t/2 r e l a t i ve  to the o rd ina te  ax is .  In such a ca se  they  
can be expanded only in even funct ions ,  and t h e r e  will  consequen t ly  be no d iscont inui ty  at  r = 0. We expand 
the funct ions x(r) and ~f~(~-) in a F o u r i e r  s e r i e s  f o r  the d imens ion le s s  p a r a m e t e r s .  The coef f ic ien ts  of the 
s e r i e s  a r e  d e t e r m i n e d  as fo l lows:  

I1/2 ~-'q ~/2 II/2 

1 % = ~ - .  g(n)dn= ~- g (o) dn + .  g (~*) dn 
0 ~] z/2 

2 2 
- -  [~ (0)  + ~ (~*)1 = - -  ~ * .  

Since } (0) = 0; } (~ *) = } * ; H = ~ l + ~ 2 (~ i and ~ 2 a r e  the d imens ion le s s  t imes  c o r r e s p o n d i n g  to r 1 and 1- 2, 
r e spec t ive ly ) .  

812 



Analogous ly  

We thus have 

4 " 2~m ' 
a~ = ~ -  ~(0) cos H qdq+ ~ (~*)cos 

vh/2 

2 ~m 
-- ~ *sin - - .  

2 ~ m  

H 
vld~l 

~(~) 1 ~ t ~ , _ _ ~  2_2_~,sin nm 2rim 
- -  - -  COS 'q. 

1 ,-]-p. ~ m  1 + l~  H 
m=l  

(15) 

Analogous ly  

4 _ _  I - -~  _~ sin am 2rim 
(~1)= 1+~ ~m l+ ,uc~  H q" 

m=l  

(16) 

F o r  the ve loc i ty  of the l iquid we have 

v (~)=  1+/~1 ' ( v ~  nm2 (v o+vA)sin l+~am cos 2nm % 
T s u m  

m=l  

(17) 

w h e r e  

Tsurn= TI -}- T 2. 

We note  that  the t e m p e r a t u r e  and ve loc i ty  of the l iquid p r i o r  to en te r ing  the l a y e r  (to, th, v0, Vk) , i . e . ,  
at  x = 0 and x = h, can a l so  be va r i ab le  quan t i t i e s .  All the a r g u m e n t s  advanced above  r e m a i n  in f o r c e ,  but 
to be expandable  in a F o u r i e r  s e r i e s  the funct ion V(T) mus t  s a t i s f y  the Di r i ch le t  condi t ions .  If we neg lec t  
the in te rna l  t h e r m a l  r e s i s t a n c e  o v e r  the vo lume of the l a y e r  p a r t i c l e s ,  then we obtain in the p r e s e n c e  of 
an in te rna l  heat  s o u r c e  ~o(x, ~-) ( e . g . ,  in the c a s e  of drying) ,  in p lace  of (1)-(4) 

v(~) at(x, ~) + at(x, T) 4- ~ (x, ~)= - -  aF--[t(x, z ) - -~ (x ,  z)l, (18) 
Ox Oz Cgm 

O# (x, T) _ a F It (x, "0 - -  ~ (x, z)] (19) 
O-c c( 1 --m) 

with in i t ia l  condi t ions  

t~ (x, 0) = ~o; t (x, 0) = t~ o + (to - -  ~0) exp ( --- - -  x (2 O) 
CgmV 

If lv0l = lVht, i . e . ,  if v(r) = v~/J(1-), Eqs .  (18)-(20) can be r educed  to  the and wi th  boundary  condi t ion  (5). 

d i m e n s i o n l e s s  f o r m  

~2 (z) aT (L z) + k~ aT (L z_____) 
O~ Oz 

-]- qD(~, z) = --[T(~,  z)--O (~, z)], 

OO (~, z) T(~, z ) - - O  (~, z), 
Oz 

O ( ~ , 0 ) = 0 ,  T ( ~ , 0 ) = e x p ( - - ~ )  

with boundary condition (14), in which ~ should be replaced by z, with 

a F cgm 
Z -  % and k 2 = - -  

c(1--m) c(l--m) 

(21) 

(22) 

(23) 
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N O T A T I O N  

thermal diffusivity, m2/h; 
bulk specific heat of the liquid (gas) and material of the particles, kcal/m 3 .deg; 
surface area of particles per unit volume of the layer, m2/m3; 
height of layer, m; 
porosity, m2/m2; 
characteristic dimension, m; 
running temperature of the liquid, ~ 
actual velocity of the liquid through the layer, m/h;  
running coordinate, m; 
coefficient of heat exchange between the liquid and the particles of the layer, kcal/m 2 .h .  deg; 
thermal conductivity coefficient, kcal/m �9 h .  deg; 
time, h; 
running temperature of the layer particles, ~ 
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